
Submitted to:
HCVS 2023

© Emanuele De Angelis and Hari Govind V K
This work is licensed under the
Creative Commons Attribution License.

CHC-COMP 2023: Competition Report

Emanuele De Angelis*

IASI-CNR, Italy

emanuele.deangelis@iasi.cnr.it

Hari Govind V K
University of Waterloo, Canada

hgvk94@gmail.com

CHC-COMP 2023 is the sixth edition of the Competition of Solvers for Constrained Horn Clauses.
The competition was run in April 2023 and the results were presented at the 10th Workshop on Horn
Clauses for Verification and Synthesis held in Paris, France, on April 23, 2023. This edition featured
seven solvers (six competing and one hors concours) and six tracks, each of which dealing with a
class of clauses. This report describes the organization of CHC-COMP 2023 and presents its results.

1 Introduction

Constrained Horn Clauses (CHCs) are a class of first-order logic formulas where the Horn clause format
is extended with constraints, that is, formulas of an arbitrary, possibly non-Horn, background theory
(such as linear integer arithmetic, arrays, and algebraic data types).

CHCs have gained popularity as a formalism well suited for automatic program verification [20, 5,
9]). Indeed, the last decade has seen impressive progress in the development of solvers for CHCs (CHC
solvers), which can now be effectively used as back-end tools for program verification due to their ability
to solve satisfiability problems dealing with a variety of background theories. A non-exhaustive list of
solvers includes: ADTInd [40], ADTRem [11], Eldarica [25], FreqHorn [16], Golem [7], HSF [20],
PCSat [39], RAHFT [27], RInGen [29], SPACER [28], Ultimate TreeAutomizer [13], and VeriMAP [10].

CHC-COMP is an annual competition that aims to evaluate state-of-the-art CHC solvers on realistic
and publicly available benchmarks; it is open to proposals and contributions from users and developers of
CHC solvers, as well as researchers working in the field of CHC solving foundations and its applications.

CHC-COMP 20231 is the 6th edition of the CHC-COMP, affiliated with the 10th Workshop on Horn
Clauses for Verification and Synthesis (HCVS 20232) held in Paris, France, on April 23, 2023. The
deadline for submitting candidate benchmarks was March 24, 2023. The deadlines for submitting tools
for the test (optional) and the competition runs were 31 March and 7 April 2023, respectively. The
competition was run in the subsequent two weeks, and the results were announced at HCVS 2023. CHC-
COMP 2023 featured 7 solvers (6 competing solvers and one hors concours), and 6 tracks, each of which
dealing with a class of clauses consisting of linear and nonlinear CHCs with constraints over linear
integer arithmetic, arrays, non-recursive/recursive algebraic data types, and a few combinations thereof.

This report is structured as follows. Section 2 presents the competition tracks, the technical resources
used to run the competition, and the evaluation model adopted to rank the solvers. Section 3 presents the
inventory of benchmarks and how the candidate benchmarks have been processed and selected for the
competition runs. Sections 4 and 5 present the tools submitted to CHC-COMP 2023 and the results of the
competition, respectively. Section 6 presents some closing remarks from the organizers and participants
of CHC-COMP 2023. Section 7 collects the tool descriptions contributed by the participants. Finally,
Appendix A includes the tables with the detailed results about the competition runs.

*The author is member of the INdAM Research Group GNCS.
1https://chc-comp.github.io/
2https://www.sci.unich.it/hcvs23/

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://chc-comp.github.io/
https://www.sci.unich.it/hcvs23/

2 CHC-COMP 2023: Competition Report

Acknowledgements

We would also like to thank the HCVS 2023 Program Chairs, David Monniaux and Jose F. Morales, for
hosting the competition this year as well, and all the HCVS attendees for the fruitful discussion we had
after the presentation of the CHC-COMP report. A special thanks goes to Hossein Hojjat for presenting
CHC-COMP 2023 at TOOLympics 20233.

CHC-COMP 2023 heavily built on the infrastructure developed by the organizers of the previous
editions, that is, Grigory Fedyukovich, Arie Gurfinkel, and Philipp Rümmer, which also includes the
contributions from Nikolaj Bjørner, Adrien Champion, and Dejan Jovanovic.

We are also extremely grateful to StarExec4 [38] that continues to support the CHC community by
providing the CHC-COMP the computing resources to run the competition. In particular, we would like
to thank Aaron Stump for helping us in accessing and using the StarExec services.

2 Design and Organization

This section presents (i) the competition tracks, (ii) the technical resources used to run the solvers, (iii)
the characteristics of the test and the competition runs, and (iv) the evaluation model used to rank the
solvers in each track.

2.1 Tracks

CHC-COMP is organized in tracks, each of which deals with a class of CHCs. CHCs are classified
according to the following features: (i) the background theory of the constraints, and (ii) the number of
uninterpreted atoms (that is, atoms whose predicate symbols do not belong to the background theory)
occurring in the premises of clauses. A clause with at most one uninterpreted atom in the premise is said
to be linear, and nonlinear otherwise.

Solvers participating in the CHC-COMP 2023 could enter the competition in six tracks (one track
was introduced in this edition, that is, ADT-LIA-nonlin, while the remaining tracks were inherited from
the previous edition)5:

1. LIA-lin: Linear Integer Arithmetic - linear clauses

2. LIA-nonlin: Linear Integer Arithmetic - nonlinear clauses

3. LIA-lin-Arrays: Linear Integer Arithmetic & Arrays - linear clauses

4. LIA-nonlin-Arrays: Linear Integer Arithmetic & Arrays - nonlinear clauses

5. LIA-nonlin-Arrays-nonrecADT: Linear Integer Arithmetic & Arrays & nonrecursive Algebraic
Data Types - nonlinear clauses

6. ADT-LIA-nonlin: Algebraic Data Types & Linear Integer Arithmetic - nonlinear clauses

3https://tacas.info/toolympics2023.php
4https://www.starexec.org/
5No solver requiring the syntactic restriction on the form of the clauses included in the LRA-TS track has been submitted

in last two editions. Hence, as proposed in [15, 12], the LRA-TS and LRA-TS-par tracks have been discontinued. Similarly,
by considering recent advances in solving techniques for CHCs including algebraic data types, the syntactic restriction on the
constraints of the CHCs in the ADT-nonlin track, which requires to have all theory symbols encoded as ADTs (called “pure
ADT” problems in [15]), was no longer needed. Hence, the track has been discontinued and replaced with a more general track
combining LIA and ADTs (that is, ADT-LIA-nonlin).

https://tacas.info/toolympics2023.php
https://www.starexec.org/

Emanuele De Angelis and Hari Govind V K 3

In addition to the theories occurring in the above list (Linear Integer Arithmetic, Arrays, nonrecur-
sive/recursive Algebraic Data Types, and combinations thereof), benchmarks in all tracks can also make
use of the Bool theory.

Finally, in LIA constraints we allow the syntactic appearance of the function symbols ∗, div, mod, and
abs. If these operations do appear, the benchmark is included/excluded from the set of LIA benchmarks
according to the following rules: (i) if the second argument of any div and mod operation is not a constant
term, the benchmark is excluded; (ii) if there is more than one non-constant term in any ∗ operation,
the benchmark is excluded; (iii) otherwise, the operations are considered semantically linear and the
benchmark is included.

2.2 Technical Resources

CHC-COMP 2023 was run, as well as in the previous editions, on the StarExec platform, but using
different technical resources[12]. StarExec made available to the CHC community a queue, called chc-

seq.q, consisting of 20 brand new nodes equipped with Intel(R) Xeon(R) Gold 6334 CPUs. The detailed
specification of the machine is available on the StarExec webpage6.

2.3 Test and Competition Runs

CHC solvers are evaluated by performing a test run and a competition run on the StarExec platform. A
run involves submitting jobs to StarExec, that is, collections of ⟨solver-configuration, benchmark⟩ pairs.

The test run is used by the participants to get acquainted with the StarExec platform and test out
their pre-submissions. Submitting a solver for test runs is optional. During this test phase, the organizers
contact the participants if they find any issues with their submission so that the participants can fix it
before their final submission. The participants are given a week in between the test and competition runs.
In the test runs, a small set of randomly selected benchmarks is used, and each job is limited to 600s
CPU time, 600s wall-clock time, and 64GB memory.

In competition runs, the final submissions of the solvers are evaluated to determine the outcome of
the competition, that is, to rank the solvers that entered the competition. In these runs each job is limited
to 1800s CPU time, 1800s wall-clock time, and 64GB memory.

Sometimes, the competition benchmarks expose soundness bugs in solvers. We catch these bugs if
two solvers disagree on the satisfiability of a benchmark. At CHC-COMP, we keep things friendly by
informing the participants about the inconsistency and giving them the benchmark to reproduce the issue.
If we have time, we even give them a chance to fix the issue and resubmit their tool. If not, we disqualify
the tool from the track.

The data gathered from the ‘job information’ CSV files produced by StarExec in the competition runs
are used to rank the solvers. All ‘job information’ CSV files of the CHC-COMP 2023 runs are available
on the StarExec space CHC/CHC-COMP/CHC-COMP-237.

2.4 Evaluation of the Competition Runs

The competing solvers were evaluated using the same approach as the 2022 edition [12].

6https://www.starexec.org/starexec/public/machine-specs.txt
7https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=538944

https://www.starexec.org/starexec/public/machine-specs.txt
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=538944

4 CHC-COMP 2023: Competition Report

The evaluation of the competition runs were done using the summarize.py script available at
https://github.com/chc-comp/scripts; the script takes as input the ‘job information’ CSV file
produced by StarExec at job completion, and produces a ranking of the solvers.

The ranking of solvers in each track is based on the score obtained by the solvers in the competition
run for a track. The score is computed on the basis of the results provided by the solver on the benchmarks
for that track. The result can be sat, unsat, or unknown (which includes solvers giving up, running out
of resources, or crashing), and the score given by the number of sat or unsat results. In the case of ex-
aequo, the ranking is determined by using the CPU time, which is the total CPU time needed by a solver
to produce the results.

The tables in Appendix A also report in column ‘#unique’ the number of sat or unsat results produced
by a solver for benchmarks for which all other solvers returned unknown. The ‘job information’ files also
include data about the space and memory consumption, which we consider less relevant and therefore
are not reported in the tables (see also the CHC-COMP 2021 and CHC-COMP 2022 reports [15, 12]).

3 Benchmarks

3.1 Format

CHC-COMP accepts benchmarks in the SMT-LIB 2.6 format [2]. All benchmarks have to conform to the
format described at https://chc-comp.github.io/format.html. This year, we updated the format
to allow the declaration of ADTs using the declare-datatypes command. We support ADTs with any
number of constructors and selectors as long as they are not parametric. Conformance is checked using
the format.py script available at https://github.com/chc-comp/scripts.

3.2 Inventory

All benchmarks used for the competition are selected from repositories under https://github.com/
chc-comp. Anyone can contribute benchmarks to this repository. This year, we got several new bench-
marks for the track ADT-LIA-nonlin. Table 1 summarizes the number of benchmarks and unique bench-
marks available in each repository. The organizers pick a subset of all available benchmarks for each
year’s competition. In the rest of this section, we explain the steps in this selection.

3.3 Processing Benchmarks

All benchmarks are processed using the format.py script, which is available at https://github.
com/chc-comp/scripts. The command line for invoking the script is

> python3.9 format.py --out-dir <out-dir> --merge_queries True <smt-file>

The script attempts to put benchmark <smt-file> into CHC-COMP format. The merge queries

option merges multiple queries into a single query as discussed in previous editions of CHC-COMP [15].
In previous competitions, this script was not used in tracks containing ADTs because it did not print
ADTs. This year, we updated the script to support printing ADTs in the SMT-LIB format using the
declare-datatypes command. When printing ADTs are grouped as follows: if a constructor of ADT
type a takes an argument of type ADT b, both a and b are grouped together. All ADTs in a group are
declared together inside the same declare-dataypes command.

After formatting, benchmarks are categorized into one of the 6 competition tracks: LIA-lin, LIA-
nonlin, LIA-lin-Arrays, LIA-nonlin-Arrays, ADT-LIA-nonlin, and LIA-nonlin-Arrays-nonrecADT. The

https://github.com/chc-comp/scripts
https://chc-comp.github.io/format.html
https://github.com/chc-comp/scripts
https://github.com/chc-comp
https://github.com/chc-comp
https://github.com/chc-comp/scripts
https://github.com/chc-comp/scripts

Emanuele De Angelis and Hari Govind V K 5

scripts for categorizing benchmarks are available at https://github.com/chc-comp/chc-tools/
tree/master/format-checker. This year, we added support for ADT tracks in the categorizing
script. The script now checks for proper declaration of ADTs and proper usage of constructors, selectors,
and recognizers. However, it does not check if a given ADT is recursive or not. Therefore, for the LIA-
nonlin-Arrays-nonrecADT track, we manually verified that all ADTs are non-recursive. Benchmarks
that could not be put in CHC-COMP compliant format and benchmarks that could not be categorized
into any tracks are not used for the competition.

Repository LIA-
lin

LIA-
nonlin

LIA-
lin-
Arrays

LIA-
nonlin-
Arrays

LIA-
nonlin-
Arrays-
nonrecADT

ADT-
LIA-
nonlin

adtrem (new) 251/247
aeval 54/54
aeval-unsafe 54/54
chc-comp19 290/290
eldarica-misc 149/136 69/66
extra-small-lia 55/55
hcai 101/87 133/131 39/39 25/25
hopv 49/48 68/67
jayhorn 75/73 7325/7224
kind2 851/736
ldv-ant-med 10/10 342/342
ldv-arrays 3/2 821/546
llreve 66/66 59/57 31/31
quic3 43/43
rust-horn (new) 11/11 6/6 56/56
seahorn 3379/2812 68/66
solidity 2200/2174
sv-comp 3150/2930 1643/1169 79/73 856/780
synth/nay-horn 119/114
synth/semgus 5371/4839
tip-adt-lia (new) 320/320
tricera 405/405 4/4
tricera/adt-arrays 156/156
ultimate 8/8 23/23
vmt 906/803
total/unique 8454/7534 10353/9648 495/488 7438/6555 2356/2330 627/623

Table 1: Summary of benchmarks (total/unique).

https://github.com/chc-comp/chc-tools/tree/master/format-checker
https://github.com/chc-comp/chc-tools/tree/master/format-checker

6 CHC-COMP 2023: Competition Report

3.4 Rating and Selection

This section describes the procedure used to select benchmarks for the competition.
We picked all unique benchmarks in the LIA-lin-Arrays track because of the scarcity of available

benchmarks. In all other tracks, we followed a procedure similar to the past editions of the competition
aiming at selecting a representative subset of the available benchmarks. In particular, we estimated how
“easy” the benchmarks were and picked a mix of “easy” and “hard” instances. We say that a benchmark
in a track is “easy” if it is solved by both the winner and the runner-up solvers in the corresponding track
in CHC-COMP 2022, within a small time interval (30s).

Each benchmark was rated A/B/C based on how difficult the winner and the runner-up solvers found
them. A rating of “A” is given if both solvers solved the benchmark, “B” if only one solver solved it,
“C” if neither solved it, within the set timeout (30s). We ran all solvers using the same binaries and
configurations submitted for CHC-COMP 2022.

Once we labeled each benchmark from a repository r, we decided the maximum number of instances,
Nr, to take from the repository. Nr number was decided based on the total number of unique benchmarks
and our knowledge about the benchmarks in repository r.

We picked at most 0.2 ·Nr benchmarks with rating A. Then, we picked at most 0.4 ·Nr benchmarks
with rating B; namely, 0.2 ·Nr from those solved only by the winner solver and 0.2 ·Nr from those solved
only by the runner-up solver. Finally, we picked at most 0.4 ·Nr benchmarks with rating C. If we did not
find enough benchmarks with rating A, we picked the rest of the benchmarks with rating B (equally from
those solved only by the winner and the runner-up). If we did not find enough benchmarks with rating
B, we pick the remaining benchmarks from rating C.

This way, we obtained a mix of “easy” and “hard” benchmarks with a bias towards benchmarks that
were not easily solved by either of the best solvers from the previous year’s competition. The number
of instances with each rating is given in Tables 2 and 3. The number of instances picked from each
repository is given in Table 4. To pick <num> benchmarks of rating <Y>, we used the command

> cat <rating-Y-benchmark-list> | sort -R | head -n <num>

We were unable to run more than one solver for tracks containing ADTs (ADT-LIA-nonlin, LIA-
nonlin-Arrays-nonrecADT). Only 3 solvers participated in tracks containing ADTs in CHC-COMP 2022:
Spacer, Eldarica, and RInGen. RInGen does not support theories other than ADTs. The version of
Eldarica submitted to CHC-COMP 2022 does not support the updated format of CHC-COMP 2023.
Specifically, this version of Eldarica does not support the SMT-LIB syntax for recognizers8. Therefore,
we were limited to using just one solver, Spacer, to select benchmarks for tracks containing ADTs. For
each repository r, we decided a maximum number of instances Nr, ran Spacer on all benchmarks with
the same timeout (30s), and picked 0.4 ·Nr benchmarks that Spacer solved (column B in Table 3) and
0.6 ·Nr benchmarks that Spacer did not solve (column C in Table 3).

The final set of benchmarks selected for CHC-COMP 2023 can be found in the github repository
https://github.com/chc-comp/chc-comp23-benchmarks, and on StarExec in the public space
CHC/CHC-COMP-23/CHC-COMP-23-competition-runs9.

8since then, Eldarica has been updated to support recognizers. E.g. Eldarica v2.0.9 that participated in CHC-COMP 2023.
9https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=538230

https://github.com/chc-comp/chc-comp23-benchmarks
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=538230

Emanuele De Angelis and Hari Govind V K 7

LIA-lin LIA-nonlin LIA-nonlin-Arrays
Repository #A #B #C #A #B #C #A #B #C

(w) (r) (w) (r) (w) (r)
aeval 12 9 4 29
aeval-unsafe 17 0 12 25
eldarica-misc 120 5 9 2 39 13 0 14
extra-small-lia 30 13 8 4
hcai 82 1 3 1 123 0 5 3 17 3 0 5
hopv 48 0 0 0 57 3 5 2
jayhorn 73 0 0 0 3712 2275 1 1236
kind2 650 70 0 16
ldv-ant-med 0 128 0 214
ldv-arrays 7 195 0 344
llreve 61 0 5 0 48 4 2 3
rust-horn 10 1 0 0 5 0 0 1
seahorn 2089 65 69 589 60 1 2 3
sv-comp 2854 1 74 1 1117 40 4 8 310 330 7 133
synth/nay-horn 70 20 4 20
synth/semgus 737 2254 4 1844
tricera/svcomp20 43 7 4 351 4 0 0 0
ultimate 0 1 0 7 0 0 0 23
vmt 711 31 7 54
total 6150 133 195 1056 5885 2427 23 1313 1071 2910 11 2563

Table 2: The number of unique benchmarks with ratings A/B/C - Tracks: LIA-lin, LIA-nonlin, and LIA-
nonlin-Arrays. B-rated benchmarks are reported in two sub-columns: (w) benchmarks solved only by the
CHC-COMP 2022 winner, and (r) benchmarks solved only by the CHC-COMP 2022 runner-up solver.

LIA-nonlin- ADT-
Arrays- LIA-nonlin
nonrecADT

Repository #B #C #B #C
adtrem 86 161
rust-horn 43 13
solidity 2109 65
tip-adt-lia 39 281
tricera/adt-arrays 65 91
total 2174 156 168 455

Table 3: The number of unique benchmarks with ratings B/C – Tracks: ADT-nonlin, and LIA-nonlin-
Arrays-nonrecADT.

8 CHC-COMP 2023: Competition Report

Repository LIA-lin LIA-
nonlin

LIA-
nonlin-
Arrays

LIA-
nonlin-
Arrays-
nonrecADT

ADT-
LIA-
nonlin

adtrem 125/125
aeval 30/30
aeval-unsafe 30/30
eldarica-misc 45/25 30/26
extra-small-lia 30/22
hcai 45/14 60/20 15/11
hopv 30/6 30/16
jayhorn 30/6 180/180
kind2 90/52
ldv-ant-med 60/60
ldv-arrays 90/90
llreve 30/11 45/18
rust-horn 28/18
seahorn 90/90 45/15
solidity 312/127
sv-comp 90/38 90/48 135/135
synth/nay-horn 60/48
synth/semgus 135/135
tip-adt-lia 160/160
tricera/svcomp20 60/60 3/0
tricera/adt-arrays 156/122
ultimate 6/5 15/15
vmt 90/90
total 600/422 639/428 450/446 468/249 313/303

Table 4: The number of benchmarks to select and the number of selected benchmarks from each reposi-
tory.

Emanuele De Angelis and Hari Govind V K 9

4 Solvers

Seven solvers were submitted to CHC-COMP 2023: six competing solvers, and one solver hors concours
(Spacer is co-developed by Hari Govind V K who is co-organizing the CHC-COMP 2023.).

Table 5 lists the submitted solvers together with the configurations used to run them on the competi-
tion tracks. Detailed descriptions of the solvers are provided in Section 7. The binaries of the solvers are
available on the StarExec space CHC/CHC-COMP/CHC-COMP-23-competitions-runs.

Solver

LIA-
lin

LIA-
nonlin

LIA-
lin-
Arrays

LIA-
nonlin-
Arrays

LIA-
nonlin-
Arrays-
nonrecADT

ADT-
LIA-
nonlin

Eldarica def def def def def def

Golem lia-lin lia-nonlin

LoAT loat horn

Theta fix fix fix fix

Ultimate
TreeAutomizer

default default default default

Ultimate
Unihorn

default default default default

Spacer def def ARRAYS ARRAYS def def

Table 5: Solvers and configurations used in the tracks; an empty entry denotes that the solver did not enter
the competition in that track. The configuration names have been taken as is from solver submissions.

5 Results

The results of the CHC-COMP 2023 are reported in Table 6. Detailed results are provided in Appendix A.
All the data gathered from the execution of the StarExec jobs created for the competition run are available
on the StarExec space CHC/CHC-COMP/CHC-COMP-23-competitions-runs.

LIA-
lin

LIA-
nonlin

LIA-
lin-
Arrays

LIA-
nonlin-
Arrays

LIA-
nonlin-
Arrays-
nonrecADT

ADT-
LIA-
nonlin

Winner Golem Eldarica Eldarica Eldarica Eldarica Eldarica
2nd place Eldarica Golem Theta Ultimate

Unihorn
3rd place Theta Ultimate

Unihorn
Ultimate
Unihorn

Theta

Table 6: Results of CHC-COMP 2023. Spacer, which entered the competition as hors concours solver,
placed in the first position of the LIA-lin, LIA-nonlin, LIA-lin-Arrays, and LIA-nonlin-Arrays tracks.

10 CHC-COMP 2023: Competition Report

5.1 Observed Issues and Fixes during the Competition runs

This section describes the issues we have run across when using the tools entered in the competition and
how we worked with the teams to overcome them.

Ultimate TreeAutomizer and Ultimate Unihorn Due to issues in building a version of Z3 that is able
to run on StarExec, the final submission for the competition run of the solvers Ultimate TreeAutomizer
and Ultimate Unihorn were completed on 14 April, 2023.

Theta In the competition runs of the LIA-nonlin-Arrays track we detected one inconsistent result:
Theta (Theta-default in Table 7) reported unsat on one benchmark, while other solvers reported sat. The
inconsistency was detected on April 14, and we informed the team on the same day by sending them the
benchmark on which the issue was detected. The team submitted an updated version of Theta on April
15. Due to a configuration problem, the updated version of Theta reported unknown on all benchmarks.
We informed the team on April 16, who provided an updated version of the solver (Theta-fix in Table 7)
on the same day.

In the competition runs of the LIA-nonlin track we detected one inconsistent result: Theta-fix re-
ported sat, while other solvers reported unsat. The Theta team was informed on April 19 by sending
them the benchmark on which the issue was detected. The team submitted a fixed version (Thetafix-fix
in Table 7) on April 19 that produced no inconsistent results.

The results presented in this report were produces using the fixed version. In Table 7 we report the
results before and after the fixes.

Theta version
LIA-lin LIA-nonlin LIA-lin-Arrays LIA-nonlin-Arrays
#sat #unsat #sat #unsat #sat #unsat #sat #unsat

Theta-default 129 53 12 21 148 50 52 40
Theta-fix 121 49 9 20 135 50 45 39
Thetafix-fix 122 48 8 30 134 50 45 40

Table 7: Results produced by Theta before and after the fixes.

Emanuele De Angelis and Hari Govind V K 11

6 Conclusions and Final Remarks

We would like to congratulate the winners of the CHC-COMP 2023 (in alphabetical order): Eldarica
(winner of the following tracks: LIA-nonlin, LIA-lin-Arrays, LIA-nonlin-Arrays, LIA-nonlin-Arrays-
nonrecADT, and LIA-nonlin-Arrays), and Golem (winner of the LIA-lin track).

In organizing this edition of the competition we did our best to address some open issues discussed
in the report of the CHC-COMP 2022 [12]. In particular, we have replaced the ADT-nonlin track with
a more general track dealing with the combined theory of LIA and ADTs (ADT-LIA-nonlin), and we
have extended the CHC format and the tools for processing and selecting the benchmarks to deal with
ADTs. Moreover, as mentioned in the previous reports [15, 12], we have discontinued the obsolete tracks
LRA-TS and LRA-TS-par. Finally, we have made a small change to the candidate benchmarks rating
process by increasing the timeout used to evaluate their “hardness” (see Section 3.4). Ideally, we would
have run the solvers with the same timeout as used in the competition (20 minutes). However, there are
over 7500 benchmarks to pick from and we expect several timeouts irrespective of the time limit. Hence,
for practical reasons, we set the timeout to 30 seconds for all solvers (previous editions had lower values
that were dependent on the solver used to rate the benchmarks).

Below, we report the still open issues that should be further discussed for future editions, and the
proposal for new tracks that emerged from the follow-up discussion we had after the presentation of the
competition report at HCVS.

• Validation of results (also discussed in the previous editions [15, 12]). The ability of solvers to
generate a witnesses (models or counter-examples) to support their results is a recurrent request
by our community members. Several solvers have support for generating a witness. However, the
witness is used mainly for debugging by the developers and having a common format for them is
still a work in progress. As an additional issue, it is often the case that these witnesses are not
for the original CHCs but for those obtained after many layers of pre-processing. Transforming
these “internal” witnesses into a witness for the original problem is also a work in progress. While
reaching a consensus on a common format for their encoding would require a thoughtful discussion
involving all members of the CHC community, we could begin, as already proposed in the previous
reports, by introducing in the CHC-COMP new tracks where the ability of producing a witness is
taken into consideration in the computation of the score.

• Status of benchmarks (from [12]). In order to assess the correctness of the result provided by
the solvers, each submitted benchmark should explicitly declare the expected result of the satisfi-
ability problem. We propose to use the (set-info ⟨keyword⟩ ⟨attr-value⟩) command with the
:status as keyword, and either sat or unsat as attr-value.

• Parallel tracks. (Thanks to Martin Blicha for having sent us this note.) We propose a parallel
version for each (or some) of the existing tracks. Instead of putting a limit on the CPU time, only
a limit on the wall-clock time would be imposed in the parallel version. Parallel tracks can be
implemented in two ways: either use the solvers’ configuration submitted for the classical tracks,
or allow a separate submission for the parallel tracks.

Finally, we would to stress once again that a bigger set of benchmarks are needed. Besides sub-
mitting their tools, all participants are invited to contribute with new benchmarks.

12 CHC-COMP 2023: Competition Report

7 Solver Descriptions

The tool descriptions in this section were contributed by the participants, and the copyright on the texts
remains with the individual authors.

7.1 Eldarica v2.0.9

Hossein Hojjat
University of Tehran, Iran

Philipp Rümmer
University of Regensburg, Germany and Uppsala University, Sweden

Algorithm. Eldarica [25] is a Horn solver applying classical algorithms from model checking: predi-
cate abstraction and counterexample-guided abstraction refinement (CEGAR). Eldarica can solve Horn
clauses over linear integer arithmetic, arrays, algebraic data-types, bit-vectors, and the theory of heaps.
It can process Horn clauses and programs in a variety of formats, implements sophisticated algorithms
to solve tricky systems of clauses without diverging, and offers an elegant API for programmatic use.

Architecture and Implementation. Eldarica is entirely implemented in Scala, and only depends on
Java or Scala libraries, which implies that Eldarica can be used on any platform with a JVM. For com-
puting abstractions of systems of Horn clauses and inferring new predicates, Eldarica invokes the SMT
solver Princess [34] as a library.

Configuration in CHC-COMP 2023. Eldarica is in the competition run with the option -portfolio,
which enables a simple portfolio mode. Four instances of the solver are run in parallel, with the following
options:

1. -splitClauses:0 -abstract:off,

2. -splitClauses:1 -abstract:off -stac,

3. -splitClauses:1 -abstract:off,

4. -splitClauses:1 -abstract:relEqs (the default options).

https://github.com/uuverifiers/eldarica

BSD licence

https://github.com/uuverifiers/eldarica

Emanuele De Angelis and Hari Govind V K 13

7.2 Golem

Martin Blicha
Università della Svizzera italiana, Switzerland

Konstantin Britikov
Università della Svizzera italiana, Switzerland

Algorithm. Golem is a CHC solver under active development that provides several backend engines
implementing various SMT- and interpolation-based model-checking algorithms. It supports the theory
of Linear Real or Integer Arithmetic and it is able to provide witnesses for both satisfiable and unsatisfi-
able CHC systems. Several back-end engines are implemeted in Golem:

• lawi is our re-implementation of the IMPACT algorithm [32]

• spacer is our re-implementation of the SPACER algorithm [28] and allows Golem to solve non-
linear systems.

• tpa is our new model-checking algorithm based on doubling abstractions using Craig interpolants [7,
6].

• bmc implements the standard algorithm of Bounded Model Checking [4]

• kind implements a basic variant of k-induction [35]

• imc is our implementation of McMillan’s first interpolation-based model-checking algorithm [31]

Architecture and Implementation. Golem is implemented in C++ and built on top of the interpolating
SMT solver OPENSMT [26] which is used for both satisfiability solving and interpolation. The only
dependencies are those inherited from OPENSMT: Flex, Bison and GMP libraries.

New Features in CHC-COMP 2023. Compared to the previous year, Golem has three new back-
end engines: bmc, kind and imc. However, these engines support only transition systems and did not
participate in the competition for this reason. Additionally, the preprocessing of the input system has
improved significantly, without losing the ability to produce witnesses.

Configuration in CHC-COMP 2023. For LIA-nonlin track we used only spacer engine; the other
engines cannot handle nonlinear system yet.

$ golem --engine spacer

For LIA-lin track, we used a trivial portfolio of lawi, spacer and tpa (in split-tpa mode) running
independently.

$ golem --engine=spacer,lawi,split-tpa

https://github.com/usi-verification-and-security/golem

MIT LICENSE

https://github.com/usi-verification-and-security/golem

14 CHC-COMP 2023: Competition Report

7.3 LoAT chc-comp-2023

Florian Frohn
LuFG Informatik 2, RWTH Aachen University, Germany

Jürgen Giesl
LuFG Informatik 2, RWTH Aachen University, Germany

Algorithm. The Loop Acceleration Tool (LoAT) [18] is based on Acceleration Driven Clause Learning
(ADCL) [19], a novel calculus for analyzing satisfiability of CHCs. LoAT’s implementation of ADCL
is based on a calculus for modular loop acceleration [17]. It can analyze linear Horn clauses over
integer arithmetic. While ADCL can also prove satisfiability of CHCs, LoAT is currently restricted to
proving unsatisfiability. Besides unsatisfiability of CHCs, LoAT can also prove non-termination and
lower bounds on the worst-case runtime complexity of transition systems.

Architecture and Implementation. LoAT is implemented in C++. It uses the SMT solvers Z3 [33] and
Yices [14], the recurrence solver PURRS [1], and the automata library libFAUDES [30].

New Features in CHC-COMP 2023. LoAT participates in the competition for the first time. Earlier
version of LoAT could not analyze CHCs, but only transition systems.

Configuration in CHC-COMP 2023. At the competition, LoAT is run with the following arguments:

--mode reachability for proving reachability for transition systems or unsatisfiability of CHCs, re-
spectively

--format horn for specifying that the input problem is given in the SMT-LIB-format for Horn clauses

https://loat-developers.github.io/LoAT/

GPL licence

https://loat-developers.github.io/LoAT/

Emanuele De Angelis and Hari Govind V K 15

7.4 Theta v4.2.3

Márk Somorjai

Mihály Dobos-Kovács

Levente Bajczi

András Vörös

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Hungary

Algorithm. THETA decides the satisfiability of Constrained Horn Clauses by transforming it to a for-
mal verification problem and employing an abstraction-based model checking technique. The input set
of CHCs are transformed into a formal program representation named Control Flow Automata (CFA) [3]
in a way that the unsatisfiability of the CHC problem is equivalent to the reachability of erroneous loca-
tions in the CFA. A bottom-up transformation is used for linear CHCs while a top-down transformation
is done to nonlinear CHCs [36]. The erroneous state reachability of the created CFA is then checked us-
ing CounterExample-Guided Abstraction Refinement (CEGAR) [8], an iterative abstraction-based model
checking algorithm.

Architecture and Implementation. THETA is a highly configurable model checking framework im-
plemented in Java [21]. It supports various formalisms for the verification programs, engineering models
and timed systems, among others. Verification is done by the main CEGAR engine, which utilizes SMT
solvers through an SMTLIB interface to calculate interpolants and check the feasibility of paths. The
CEGAR engine can be configured to use different abstraction domains and interpolation techniques. The
framework offers a number of command line tools equipped with frontends that parse the input problem
into a formalism. The bottom-up and top-down transformations from CHCs to CFA are implemented as
a frontends for the xcfa-cli tool.

Configuration in CHC-COMP 2023. THETA is run with a sequential portfolio of 3 configurations
listed below, using explicit value tracking, split predicate or cartesian predicate abstraction. Interpola-
tion was set to backwards binary interpolation or sequential interpolation, calculated by Z3 10 as the
underlying SMT solver.

1. --domain PRED SPLIT --refinement BW BIN ITP --predsplit WHOLE

2. --domain PRED CART --refinement BW BIN ITP --predsplit WHOLE

3. --domain EXPL --refinement SEQ ITP

THETA detects whether the input CHCs are linear or not and employs a bottom-up transformation
for the former and a top-down transformation for the latter. The submitted Theta version and run scripts
are available in the competition archive [37].

https://github.com/ftsrg/theta

Apache License 2.0

10https://github.com/Z3Prover/z3

https://orcid.org/0000-0001-7537-0469
https://orcid.org/0000-0002-0064-2965
https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0001-7617-3563
https://github.com/ftsrg/theta
https://github.com/Z3Prover/z3

16 CHC-COMP 2023: Competition Report

7.5 Ultimate TreeAutomizer 0.2.3-dev-ac87e89

Matthias Heizmann
University of Freiburg, Germany

Daniel Dietsch
University of Freiburg, Germany

Jochen Hoenicke
University of Freiburg, Germany

Alexander Nutz
University of Freiburg, Germany

Andreas Podelski
University of Freiburg, Germany

Frank Schüssele
University of Freiburg, Germany

Algorithm. The ULTIMATE TREEAUTOMIZER solver implements an approach that is based on tree
automata [13]. In this approach potential counterexamples to satisfiability are considered as a regular set
of trees. In an iterative CEGAR loop we analyze potential counterexamples. Real counterexamples lead
to an unsat result. Spurious counterexamples are generalized to a regular set of spurious counterexamples
and subtracted from the set of potential counterexamples that have to be considered. In case we detected
that all potential counterexamples are spurious, the result is sat. The generalization above is based on
tree interpolation and regular sets of trees are represented as tree automata.

Architecture and Implementation. TREEAUTOMIZER is a toolchain in the ULTIMATE framework.
This toolchain first parses the CHC input and then runs the treeautomizer plugin which implements
the above mentioned algorithm. We obtain tree interpolants from the SMT solver SMTInterpol11 [24].
For checking satisfiability, we use the and Z3 SMT solver12. The tree automata are implemented in
ULTIMATE’s automata library13. The ULTIMATE framework is written in Java and build upon the Eclipse
Rich Client Platform (RCP). The source code is available at GitHub14.

Configuration in CHC-COMP 2023. Our StarExec archive for the competition is shipped with the
bin/starexec run default shell script calls the ULTIMATE command line interface with the TreeAu-
tomizer.xml toolchain file and the TreeAutomizerHopcroftMinimization.epf settings file. Both
files can be found in toolchain (resp. settings) folder of ULTIMATE’s repository.

https://www.ultimate-pa.org/

LGPLv3 with a linking exception for Eclipse RCP

11https://ultimate.informatik.uni-freiburg.de/smtinterpol/
12https://github.com/Z3Prover/z3
13https://www.ultimate-pa.org/?ui=tool&tool=automata_library
14https://github.com/ultimate-pa/

https://www.ultimate-pa.org/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/Z3Prover/z3
https://www.ultimate-pa.org/?ui=tool&tool=automata_library
https://github.com/ultimate-pa/

Emanuele De Angelis and Hari Govind V K 17

7.6 Ultimate Unihorn 0.2.3-dev-ac87e89

Matthias Heizmann
University of Freiburg, Germany

Daniel Dietsch
University of Freiburg, Germany

Jochen Hoenicke
University of Freiburg, Germany

Alexander Nutz
University of Freiburg, Germany

Andreas Podelski
University of Freiburg, Germany

Frank Schüssele
University of Freiburg, Germany

Algorithm. ULTIMATE UNIHORN reduces the satisfiability problem for a set of constraint Horn clauses
to a software verfication problem. In a first step UNIHORN applies a yet unpublished translation in
which the constraint Horn clauses are translated into a recursive program that is nondeterministic and
whose correctness is specified by an assert statement The program is correct (i.e., no execution violates
the assert statement) if and only if the set of CHCs is satisfiable. For checking whether the recursive
program satisfies its specification, Unihorn uses ULTIMATE AUTOMIZER [22] which implements an
automata-based approach to software verification [23].

Architecture and Implementation. ULTIMATE UNIHORN is a toolchain in the ULTIMATE frame-
work. This toolchain first parses the CHC input and then runs the chctoboogie plugin which does
the translation from CHCs into a recursive program. We use the Boogie language to represent that
program. Afterwards the default toolchain for verifying a recursive Boogie programs by ULTIMATE AU-
TOMIZER is applied. The ULTIMATE framework shares the libraries for handling SMT formulas with
the SMTInterpol SMT solver. While verifying a program, ULTIMATE AUTOMIZER needs SMT solvers
for checking satisfiability, for computing Craig interpolants and for computing unsatisfiable cores. The
version of UNIHORN that participated in the competition used the SMT solvers SMTInterpol15and Z316.
The ULTIMATE framework is written in Java and build upon the Eclipse Rich Client Platform (RCP).
The source code is available at GitHub17.

Configuration in CHC-COMP 2023. Our StarExec archive for the competition is shipped with the
bin/starexec run default shell script calls the ULTIMATE command line interface with the Au-

tomizerCHC.xml toolchain file and the chccomp-Unihorn Default.epf settings file. Both files can
be found in toolchain (resp. settings) folder of ULTIMATE’s repository.

https://www.ultimate-pa.org/

LGPLv3 with a linking exception for Eclipse RCP

15https://ultimate.informatik.uni-freiburg.de/smtinterpol/
16https://github.com/Z3Prover/z3
17https://github.com/ultimate-pa/

https://www.ultimate-pa.org/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/Z3Prover/z3
https://github.com/ultimate-pa/

18 CHC-COMP 2023: Competition Report

References

[1] Roberto Bagnara, Andrea Pescetti, Alessandro Zaccagnini & Enea Zaffanella (2005): PURRS: Towards Com-
puter Algebra Support for Fully Automatic Worst-Case Complexity Analysis, doi:10.48550/arXiv.cs/0512056.

[2] Clark Barrett, Pascal Fontaine & Cesare Tinelli (2016): The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org.

[3] Dirk Beyer & M. Erkan Keremoglu (2011): CPAchecker: A Tool for Configurable Software Verification. In
Ganesh Gopalakrishnan & Shaz Qadeer, editors: Computer Aided Verification, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 184–190, doi:10.1007/978-3-642-22110-1 16.

[4] Armin Biere, Alessandro Cimatti, Edmund Clarke & Yunshan Zhu (1999): Symbolic Model Checking without
BDDs. In W. Rance Cleaveland, editor: Tools and Algorithms for the Construction and Analysis of Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 193–207, doi:10.1007/3-540-49059-0 14.

[5] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan & Andrey Rybalchenko (2015): Horn Clause Solvers for
Program Verification. In Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner &
Wolfram Schulte, editors: Fields of Logic and Computation II: Essays Dedicated to Yuri Gurevich on the
Occasion of His 75th Birthday, Springer International Publishing, Cham, pp. 24–51, doi:10.1007/978-3-319-
23534-9 2.

[6] Martin Blicha, Grigory Fedyukovich, Antti E. J. Hyvärinen & Natasha Sharygina (2022): Split Transition
Power Abstractions for Unbounded Safety. In Alberto Griggio & Neha Rungta, editors: Proceedings of
the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022, TU Wien Academic
Press, pp. 349–358.

[7] Martin Blicha, Grigory Fedyukovich, Antti E. J. Hyvärinen & Natasha Sharygina (2022): Transition Power
Abstractions for Deep Counterexample Detection. In Dana Fisman & Grigore Rosu, editors: Tools and
Algorithms for the Construction and Analysis of Systems, Springer International Publishing, Cham, pp.
524–542, doi:10.1007/978-3-030-99524-9 29.

[8] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu & Helmut Veith (2003): Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. J. ACM 50(5), p. 752–794, doi:10.1145/876638.876643.

[9] Emanuele De Angelis, Fabio Fioravanti, John P. Gallagher, Manuel V. Hermenegildo, Alberto Pettorossi &
Maurizio Proeitti (2021): Analysis and Transformation of Constrained Horn Clauses for Program Verifica-
tion. Theory and Practice of Logic Programming, p. 1–69, doi:10.1017/S1471068421000211.

[10] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2014): VeriMAP: A Tool for
Verifying Programs through Transformations. In: Tools and Algorithms for the Construction and Analysis of
Systems, TACAS ’14, Lecture Notes in Computer Science 8413, Springer, pp. 568–574, doi:10.1007/978-3-
642-54862-8 47.

[11] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2022): Satisfiability of con-
strained Horn clauses on algebraic data types: A transformation-based approach. J. Log. Comput. 32(2),
pp. 402–442, doi:10.1093/logcom/exab090.

[12] Emanuele De Angelis & Hari Govind V K (2022): CHC-COMP 2022: Competition Report. Electronic
Proceedings in Theoretical Computer Science 373, pp. 44–62, doi:10.4204/eptcs.373.5.

[13] Daniel Dietsch, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz & Andreas Podelski (2019): Ul-
timate TreeAutomizer (CHC-COMP Tool Description). In Emanuele De Angelis, Grigory Fedyukovich,
Nikos Tzevelekos & Mattias Ulbrich, editors: Proceedings of the Sixth Workshop on Horn Clauses
for Verification and Synthesis and Third Workshop on Program Equivalence and Relational Reason-
ing, HCVS/PERR@ETAPS 2019, Prague, Czech Republic, 6-7th April 2019, EPTCS 296, pp. 42–47,
doi:10.4204/EPTCS.296.7.

[14] Bruno Dutertre (2014): Yices 2.2. In Armin Biere & Roderick Bloem, editors: CAV ’14, Springer Interna-
tional Publishing, pp. 737–744, doi:10.1007/978-3-319-08867-9 49.

http://dx.doi.org/10.48550/arXiv.cs/0512056
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-319-23534-9_2
http://dx.doi.org/10.1007/978-3-319-23534-9_2
http://dx.doi.org/10.1007/978-3-030-99524-9_29
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1017/S1471068421000211
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1093/logcom/exab090
http://dx.doi.org/10.4204/eptcs.373.5
http://dx.doi.org/10.4204/EPTCS.296.7
http://dx.doi.org/10.1007/978-3-319-08867-9_49

Emanuele De Angelis and Hari Govind V K 19

[15] Grigory Fedyukovich & Philipp Rümmer (2021): Competition Report: CHC-COMP-21. In Hossein Hojjat
& Bishoksan Kafle, editors: Proceedings 8th Workshop on Horn Clauses for Verification and Synthesis,
HCVS@ETAPS 2021, Virtual, 28th March 2021, EPTCS 344, Open Publishing Association, pp. 91–108,
doi:10.4204/EPTCS.344.7.

[16] Grigory Fedyukovich, Yueling Zhang & Aarti Gupta (2018): Syntax-Guided Termination Analysis. In Hana
Chockler & Georg Weissenbacher, editors: Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part I, Lecture Notes in Computer Science 10981, Springer, pp. 124–143, doi:10.1007/978-3-
319-96145-3 7.

[17] Florian Frohn (2020): A Calculus for Modular Loop Acceleration. In Armin Biere & David Parker, editors:
TACAS ’20, Springer International Publishing, pp. 58–76, doi:10.1007/978-3-030-45190-5 4.

[18] Florian Frohn & Jürgen Giesl (2022): Proving Non-Termination and Lower Runtime Bounds with LoAT
(System Description). In Jasmin Blanchette, Laura Kovács & Dirk Pattinson, editors: IJCAR ’22, Springer
International Publishing, pp. 712–722, doi:10.1007/978-3-031-10769-6 41.

[19] Florian Frohn & Jürgen Giesl (2023): ADCL: Acceleration Driven Clause Learning for Constrained Horn
Clauses, doi:10.48550/arXiv.2303.01827.

[20] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012): Synthesizing soft-
ware verifiers from proof rules. In Jan Vitek, Haibo Lin & Frank Tip, editors: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, ACM,
pp. 405–416, doi:10.1145/2254064.2254112.

[21] Ákos Hajdu & Zoltán Micskei (2020): Efficient Strategies for CEGAR-Based Model Checking. Journal of
Automated Reasoning 64(6), pp. 1051–1091, doi:10.1007/s10817-019-09535-x.

[22] Matthias Heizmann, Max Barth, Daniel Dietsch, Leonard Fichtner, Jochen Hoenicke, Dominik Klumpp,
Mehdi Naouar, Tanja Schindler, Frank Schüssele & Andreas Podelski (2023): Ultimate Automizer and the
CommuHash Normal Form - (Competition Contribution). In Sriram Sankaranarayanan & Natasha Sharygina,
editors: Tools and Algorithms for the Construction and Analysis of Systems - 29th International Conference,
TACAS 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Paris, France, April 22-27, 2023, Proceedings, Part II, Lecture Notes in Computer Science 13994,
Springer, pp. 577–581, doi:10.1007/978-3-031-30820-8 39.

[23] Matthias Heizmann, Jochen Hoenicke & Andreas Podelski (2013): Software Model Checking for People Who
Love Automata. In: CAV, Lecture Notes in Computer Science 8044, Springer, pp. 36–52, doi:10.1007/978-
3-642-39799-8 2.

[24] Jochen Hoenicke & Tanja Schindler (2018): Efficient Interpolation for the Theory of Arrays. In: IJCAR,
Lecture Notes in Computer Science 10900, Springer, pp. 549–565, doi:10.1007/978-3-319-94205-6 36.

[25] Hossein Hojjat & Philipp Rümmer (2018): The ELDARICA Horn Solver. In: 2018 Formal Methods in
Computer Aided Design, FMCAD, pp. 1–7, doi:10.23919/FMCAD.2018.8603013.

[26] Antti E. J. Hyvärinen, Matteo Marescotti, Leonardo Alt & Natasha Sharygina (2016): OpenSMT2: An SMT
Solver for Multi-core and Cloud Computing. In Nadia Creignou & Daniel Le Berre, editors: Theory and
Applications of Satisfiability Testing – SAT 2016, Springer International Publishing, Cham, pp. 547–553,
doi:10.1007/978-3-319-40970-2 35.

[27] Bishoksan Kafle, John P. Gallagher & José F. Morales (2016): RAHFT: A Tool for Verifying Horn Clauses
Using Abstract Interpretation and Finite Tree Automata. In Swarat Chaudhuri & Azadeh Farzan, editors:
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part I, Lecture Notes in Computer Science 9779, Springer, pp. 261–268, doi:10.1007/978-
3-319-41528-4 14.

[28] Anvesh Komuravelli, Arie Gurfinkel & Sagar Chaki (2016): SMT-based Model Checking For Recursive
Programs. Formal Methods in System Design 48(3), pp. 175–205, doi:10.1007/s10703-016-0249-4.

http://dx.doi.org/10.4204/EPTCS.344.7
http://dx.doi.org/10.1007/978-3-319-96145-3_7
http://dx.doi.org/10.1007/978-3-319-96145-3_7
http://dx.doi.org/10.1007/978-3-030-45190-5_4
http://dx.doi.org/10.1007/978-3-031-10769-6_41
http://dx.doi.org/10.48550/arXiv.2303.01827
http://dx.doi.org/10.1145/2254064.2254112
http://dx.doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1007/978-3-031-30820-8_39
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-319-94205-6_36
http://dx.doi.org/10.23919/FMCAD.2018.8603013
http://dx.doi.org/10.1007/978-3-319-40970-2_35
http://dx.doi.org/10.1007/978-3-319-41528-4_14
http://dx.doi.org/10.1007/978-3-319-41528-4_14
http://dx.doi.org/10.1007/s10703-016-0249-4

20 CHC-COMP 2023: Competition Report

[29] Yurii Kostyukov, Dmitry Mordvinov & Grigory Fedyukovich (2021): Beyond the Elementary Representa-
tions of Program Invariants over Algebraic Data Types. In: Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation, PLDI 2021, ACM, p. 451–465,
doi:10.1145/3453483.3454055.

[30] libFAUDES Library. Available at https://fgdes.tf.fau.de/faudes/index.html.
[31] Kenneth L. McMillan (2003): Interpolation and SAT-Based Model Checking. In Warren A. Hunt & Fabio

Somenzi, editors: Computer Aided Verification, Springer, Berlin Heidelberg, pp. 1–13, doi:10.1007/978-3-
540-45069-6 1.

[32] Kenneth L. McMillan (2006): Lazy Abstraction with Interpolants. In Thomas Ball & Robert B. Jones,
editors: Computer Aided Verification, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 123–136,
doi:10.1007/11817963 14.

[33] Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In C. R. Ramakrishnan & Jakob
Rehof, editors: TACAS ’08, Springer Berlin Heidelberg, pp. 337–340, doi:10.1007/978-3-540-78800-3 24.

[34] Philipp Rümmer (2008): A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arith-
metic. In: Proceedings, 15th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, LNCS 5330, Springer, pp. 274–289, doi:10.1007/978-3-540-89439-1 20.

[35] Mary Sheeran, Satnam Singh & Gunnar Stålmarck (2000): Checking Safety Properties Using Induction and
a SAT-Solver. In Warren A. Hunt & Steven D. Johnson, editors: Formal Methods in Computer-Aided Design,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 127–144, doi:10.1007/3-540-40922-X 8.

[36] Márk Somorjai, Mihály Dobos-Kovács, Zsófia Ádám, Levente Bajczi & András Vörös (2023): Bottoms Up
for CHCs: Novel Transformation of Linear Constrained Horn Clauses to Software Verification. Electronic
Proceedings in Theoretical Computer Science.

[37] Márk Somorjai, Mihály Dobos-Kovács, Levente Bajczi & András Vörös (2023): Tool Archive of Theta for
CHC-COMP 2023, doi:10.5281/zenodo.7954684.

[38] Aaron Stump, Geoff Sutcliffe & Cesare Tinelli (2014): StarExec: A Cross-Community Infrastructure for
Logic Solving. In Stéphane Demri, Deepak Kapur & Christoph Weidenbach, editors: Automated Reasoning,
Springer International Publishing, Cham, pp. 367–373, doi:10.1007/978-3-319-08587-6 28.

[39] Hiroshi Unno, Tachio Terauchi & Eric Koskinen (2021): Constraint-Based Relational Verification. In
Alexandra Silva & K. Rustan M. Leino, editors: Computer Aided Verification, Springer International Pub-
lishing, Cham, pp. 742–766, doi:10.1007/978-3-030-81685-8 35.

[40] Weikun Yang, Grigory Fedyukovich & Aarti Gupta (2019): Lemma Synthesis for Automating Induction over
Algebraic Data Types. In Thomas Schiex & Simon de Givry, editors: Principles and Practice of Constraint
Programming - 25th International Conference, CP 2019, Stamford, CT, USA, September 30 - October 4,
2019, Proceedings, Lecture Notes in Computer Science 11802, Springer, pp. 600–617, doi:10.1007/978-3-
030-30048-7 35.

http://dx.doi.org/10.1145/3453483.3454055
https://fgdes.tf.fau.de/faudes/index.html
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-89439-1_20
http://dx.doi.org/10.1007/3-540-40922-X_8
http://dx.doi.org/10.5281/zenodo.7954684
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-030-81685-8_35
http://dx.doi.org/10.1007/978-3-030-30048-7_35
http://dx.doi.org/10.1007/978-3-030-30048-7_35

Emanuele De Angelis and Hari Govind V K 21

A Detailed results

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 265 199 66 274397 138310 43
Golem 229 148 81 368980 129633 8
Eldarica 219 160 59 385851 112832 23
Theta 170 122 48 426006 370425 0
U. Unihorn 103 72 31 449683 384389 0
U. TreeAutomizer 81 50 31 537858 517349 0
LoAT 50 0 50 287878 287841 4

Table 8: Solver performance on LIA-lin track

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 384 235 149 90842 50781 38
Eldarica 330 185 145 218944 79522 9
Golem 310 178 132 248569 248578 3
U. Unihorn 121 72 49 470768 389915 0
Theta 38 8 30 687374 666145 0
U. TreeAutomizer 34 5 29 569895 531158 0

Table 9: Solver performance on LIA-nonlin track

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 281 212 69 359439 187454 81
Eldarica 220 150 70 478284 166185 15
Theta 184 134 50 285884 271624 0
U. Unihorn 164 122 42 242113 206799 1
U. TreeAutomizer 131 96 35 239591 229783 0

Table 10: Solver performance on LIA-lin-Arrays track

22 CHC-COMP 2023: Competition Report

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Spacer 258 148 110 290925 156914 75
Eldarica 206 122 84 454921 184851 26
U. Unihorn 96 37 59 234519 199416 0
Theta 85 45 40 588095 569760 4
U. TreeAutomizer 56 6 50 276025 250747 0

Table 11: Solver performance on LIA-nonlin-Arrays track

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Eldarica 176 85 91 114521 42212 57
Spacer 120 59 61 195321 107046 1

Table 12: Solver performance on LIA-nonlin-Arrays-nonrecADT track

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique
Eldarica 58 22 36 433561 150012 30
Spacer 30 3 27 440259 290358 2

Table 13: Solvers performance on ADT-LIA-nonlin track

	Introduction
	Design and Organization
	Tracks
	Technical Resources
	Test and Competition Runs
	Evaluation of the Competition Runs

	Benchmarks
	Format
	Inventory
	Processing Benchmarks
	Rating and Selection

	Solvers
	Results
	Observed Issues and Fixes during the Competition runs

	Conclusions and Final Remarks
	Solver Descriptions
	Eldarica v2.0.9
	Golem
	LoAT chc-comp-2023
	Theta v4.2.3
	Ultimate TreeAutomizer 0.2.3-dev-ac87e89
	Ultimate Unihorn 0.2.3-dev-ac87e89

	Detailed results

