

 Report on the 2022 edition

https://chc-comp.github.io/

Emanuele De Angelis, Inst. for Systems Analysis and Computer Science - National Research Council, Italy

Hari Govind V K, University of Waterloo, Canada

https://chc-comp.github.io/

Outline

● Tracks

● Benchmarks

● Teams & Solvers

● Results

● Discussion

Tracks

● Linear Integer Arithmetic, Linear clauses (LIA-Lin)

● LIA, Nonlinear clauses (LIA-Nonlin)

● LIA and Arrays, Linear clauses (LIA-Lin-Array)

● LIA and Arrays, Nonlinear clauses (LIA-Nonlin-Array)

● Linear Real Arithmetic, Transition Systems (LRA-TS)

● LRA-TS-parallel, Transition Systems (LRA-TS-par)

● Algebraic Data-Types, Nonlinear clauses (ADT-Nonlin)

● LIA, Arrays and non-recursive ADT, Nonlinear clauses (LIA-Nonlin-Arrays-nonrecADT)

New in 2022

Benchmarks
Inventory & Selection process

New Benchmarks
● Solidity CHC Benchmarks (Thanks to Leonardo Alt)

Nonlinear clauses; LIA + Arrays + non-recursive ADTs
Source: Solidity SMTChecker, Eth2 Deposit Contract, and OpenZeppelin's ERC777 implementation
https://github.com/leonardoalt/chc_benchmarks_solidity

● TriCera (Thanks to Zafer Esen & Philipp Rümmer)
Nonlinear clauses; LIA + Arrays + non-recursive ADTs
Source: TriCera model checker (for C), https://github.com/zafer-esen/tricera-adt-arr

● RInGen (Thanks to Yurii Kostyukov)
Nonlinear clauses; ADTs only
Source: TIP/Isaplanner (CHC-COMP 2021 updated benchmarks)
https://github.com/chc-comp/ringen-adt-benchmarks

● Ultimate (Thanks to Matthias Heizmann & Frank Schüssele)
Nonlinear clauses; LIA + Arrays
Source: Ultimate framework, https://github.com/schuessf/chc-comp-benchmarks

● Golem (Thanks to Martin Blicha)
Linear clauses; LIA
Source: unsafe version of AE-VAL benchmarks, https://github.com/blishko/chc-benchmarks

https://github.com/leonardoalt/chc_benchmarks_solidity
https://github.com/zafer-esen/tricera-adt-arr
https://github.com/chc-comp/ringen-adt-benchmarks
https://github.com/schuessf/chc-comp-benchmarks
https://github.com/blishko/chc-benchmarks

Benchmark processing
Repositories: https://github.com/chc-comp, https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=73700

● LIA-{lin,nonlin}, LIA-{lin,nonlin}-Arrays, LRA-TS (same as in CHC-COMP 2021)

a. Formatted (according to the CHC-COMP rules) using format.py (https://github.com/chc-comp/chc-tools)

b. Categorized using check[-TRACK] (https://github.com/chc-comp/chc-tools)

c. Removed duplicated benchmarks

● ADT-nonlin (same as in CHC-COMP 2021)
a. Purified by using the RInGEN transformation: elimination of SMT theories and recursively-defined functions

(e.g. Int -> Nat + SMT rec. functions)

● LIA-nonlin-Arrays-nonrecADT
a. Removed duplicated benchmarks

https://github.com/chc-comp
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=73700
https://github.com/chc-comp/chc-tools
https://github.com/chc-comp/chc-tools

Benchmarks
inventory
(total/unique
 #benchmarks)

Benchmark selection
The “hardness” of the benchmarks is determined by

using the results of the two top solvers from 2021:

A - rated benchmarks: both solvers can solve it
B - rated benchmarks: one solver can solve it
C - rated benchmarks: both solvers time out

(approach similar to that of CHC-COMP 2021)

Selection process applied to tracks where we have:

● too many benchmarks, or

● a few repos with a significant difference in the number of benchmarks
(LIA-lin, LIA-nonlin, LIA-nonlin-Arrays, ADT-nonlin, LIA-nonlin-Arrays-nonrecADT)

(5s timeout) (10s timeout)

Benchmark selection
● Run the two top solvers to get the ratings A, B, and C. This yields four classes:

○ A-rated benchmarks
○ B-rated benchmarks (solved by Spacer only)
○ B-rated benchmarks (solved by Eldarica only)
○ C-rated benchmarks

● For each benchmark repository, we

○ choose a number Nr of benchmarks to be selected

○ randomly select:

✓ up to 0.2xNr A-rated benchmarks
✓ up to 0.4xNr B-rated benchmarks equally distributed between Spacer and Eldarica
✓ up to 0.4xNr C-rated benchmarks
(If any repo contains fewer benchmarks than required, take the rest from the next higher rating class)

Hardness
statistics

Competition
benchmarks

Solvers (5 competing + 1 hors concours) & Tracks (7)

LIA-nonlin LIA-lin LIA-nonlin-
Arrays

LIA-lin-
Arrays

LRA-TS
LRA-TS-para

llel

ADT-nonlin LIA-nonlin-
Arrays-

nonrecATD

Eldarica Yes Yes Yes Yes No Yes Yes

Golem Yes Yes No No Yes No No

RInGEN No No No No No Yes No

Ultimate
TreeAutomizer Yes Yes Yes Yes Yes Yes Yes

Ultimate
Unihorn Yes Yes Yes Yes Yes No No

Spacer
(Hors Concours) Yes Yes Yes Yes Yes Yes Yes

Competition Runs (same as CHC-COMP 2021)

● LIA-{lin,nonlin}, LIA-{lin,nonlin}-Arrays, LRA-TS, ADT-nonlin, LIA-nonlin-Arrays-nonrecADT
○ Timeout 1800s, CPU time

○ Memory limit: 64GB

○ Two jobs per StarExec node, two cores for each job

● LRA-TS-parallel
○ Timeout 1800s, wall-clock time

○ Memory limit: 64GB

○ One job per StarExec node, four cores for each job

Competing Solvers

Eldarica Overview

Horn solver developed since 2011

Open-source, implemented in Scala, running in JVM

Input formats:
SMT-LIB, Prolog, C, timed automata

Theories:
LIA, NIA, arrays, heap, algebraic data-types, bit-vectors

New in 2022 (v2.0.8):
Fixes & improvements in array and heap solver; different portfolio

Scala/Java API

Support for linear + non-linear clauses

https://github.com/uuverifiers/eldarica

Hojjat,Rümmer The Eldarica Horn Solver 1 / 1

https://github.com/uuverifiers/eldarica

Golem CHC solver

Active development at USI Formal Verification and Security Lab

Builds on top of the interpolating SMT solver OpenSMT

Supports linear real and integer arithmetic

Three engines

Impact [McMillan ’06] (Lazy Abstraction with Interpolants)

Spacer [Komuravelli et al. ’16]

TPA [Blicha et al. ’22] (Transition Power Abstraction)

https://github.com/usi-verification-and-security/golem

Competition tracks and configurations

LRA-TS - portfolio

LIA-Lin - portfolio

LIA-Nonlin - only Spacer engine

http://verify.inf.usi.ch
https://github.com/usi-verification-and-security/opensmt/
https://link.springer.com/chapter/10.1007/11817963_14
https://link.springer.com/article/10.1007/s10703-016-0249-4
https://link.springer.com/chapter/10.1007/978-3-030-99524-9_29
https://github.com/usi-verification-and-security/golem

RInGen: Regular Invariant Generator
• RInGen solves (nonlinear) CHCs over ADTs
• RInGen supports many backend solvers:

• Z3, Eldarica, cvc5, VeriMAP, Vampire
• CHC-COMP’22 submission uses Vampire as a backend
• Source code: https://github.com/Columpio/RInGen
• Developed by Yurii Kostyukov (JetBrains Research)

Quantified EUF formula
without 6=, testers
and selectors

CHCs over ADTs
CHCs over ADTs
without 6=, testers
and selectors

FOL solver
Model

(⇒ Invariant)

Figure: RInGen workflow

https://github.com/Columpio/vampire
https://github.com/Columpio/RInGen

Competition Results

LIA-lin

LIA-nonlin

LIA-lin-Arrays

LIA-nonlin-Arrays

LRA-TS

LRA-TS-parallel

ADT-nonlin

LIA-nonlin-Arrays-nonrecADT

Results

LIA-lin LIA-nonlin LIA-Nonlin-
Arrays

LIA-Lin-
Arrays

LRA-TS LRA-TS-
parallel

ADT-Nonlin LIA-Nonlin-
Arrays-

nonrecADT

1st Golem Golem Eldarica Eldarica Golem Golem RInGen Eldarica

2nd Eldarica Eldarica
Ultimate
Unihorn

Ultimate
Unihorn

Ultimate
TreeAutomizer

Ultimate
TreeAutomizer

Eldarica

3rd
Ultimate
Unihorn

Ultimate
Unihorn

Ultimate
TreeAutomizer

Ultimate
TreeAutomizer

Ultimate
TreeAutomizer

Ultimate
Unihorn

Spacer for many unofficial 1st places

Big Thanks to

Discussion

● Results validation:
○ models/counterexamples ?
○ set-info :status ?

● Tracks:
○ Discontinue LRA-TS? Move to LRA-lin track or a more general LRA track ?
○ A more general LIA-nonlin-Arrays-ADT track?

■ Should we continue the new track?

● CHC-COMP 2023 Organisers?

