CHC
COMP

Report on the Second Edition of
the CHC Competition

Grigory Fedyukovich

April 7, Prague

Constrained Horn Clauses CHC

Formula in first order logic:

ecApr(VIN...App(V) = H

where 4 is a constraint language
(e.g., (non-)linear arithmetic, arrays, bit-vectors, etc.)

* isaconstraintin 4

* p,... p; are uninterpreted relation symbols

each p, (V) is an application of the predicate to variables
H is either some application p, (V) or false

System of CHCs

* Only one CHC with H = false

* Has a solution if there exists an interpretation for each p,
making each CHC valid

Example

Programin C

int x, k, ¢ = 0;

int N = NONDET();

assume (N > 0);

while (¢ # N) {
c++;
if (k mod 2 == 0) x++;
k = x + c;

h

if (x # N) ERRORQ);

r=0ANk=0Ac=0AN >0
— Inv(z,k,c,N)

v’ =ite (k mod 2=0,z+1,2)A
k/::[:/_l_c/
— Inv(z',k',d,N)

i Inv(z,k,c,N) Nc#NAd =c+ 1A
i Inv(aj7k7c7N)/\C:N/\x#N — J_

Validating Solutions of CHCs

System of CHCs

Validating Solutions of CHCs

System of CHCs

CHC Solving Competition CHC

COMP

e Second Edition: April 7 2019, HCVS@ETAPS

* The CHC competition (CHC-COMP) compares state-of-the-
art tools for CHC solving with respect to performance and
effectiveness on a set of publicly available benchmarks

 Web: https://chc-comp.github.io/

* Gitter: https://gitter.im/chc-comp/Lobby

* GitHub: https://github.com/chc-comp

* Format: https://chc-comp.github.io/2018/format.html

CHC Format

bench ::= (set-logic HORN)
fun_decl+
(assert assert)*
(assert query)
(check-sat)
fun_decl ::= (declare-fun symbol (sort*) Bool)

var_decl ::= (symbol sort)

head ::= (u_predicate var®)
tail ::= (u_predicate var*) | SMT-LIB-formula | (and tail taia)
assert ::= (forall (var_decl+) (=> tail head)) | head

query ::= (forall (var_decl+) (=> tail false))

Tracks CHC
COMP

Linear Integer Arithmetic, linear clauses (LIA-Lin)

at most one application of an uninterpreted relation symbol in each
CHC tail

Arrays + LIA-Lin NEW in 2019

formulas involve array variables

Linear Integer Arithmetic, nonlinear clauses (LIA-Nonlin)

tail of some CHC has more than one application of uninterpreted
relation symbols

Linear Real Arithmetic, transition systems (LRA-TS)

one uninterpreted relation symbol, three CHCs

Benchmarks CHC
COMP

325 instances contributed by Hoice, Ultimate, Eldarica, Sally,
Kind2/Zustre, FreqHorn/FregTerm, VMT

361 instances contributed by Spacer, Ultimate, FregHorn

283 instances contributed by PCSat, Hoice, Ultimate, Eldarica

243 instances contributed by Sally, FreqHorn/FreqTerm, VMT

Participants

PCSat NEW in 2019

Yuki Satake,
Tomoya Kashifuku, and
Hiroshi Unno

Sally

Dejan Jovanovic,
Martin Blicha

Eldarica

Hossein Hojjat and
Philipp Rimmer

CHC

COMP

Hoice

Adrien Champion

Ultimate Tree Automizer

Daniel Dietsch, Matthias Heizmann, Jochen
Hoenicke, Mostafa M. Mohamed, Alexander Nutz,
Andreas Podelski, and Daniel Tischner

Ultimate Unihorn Automizer

Daniel Dietsch, Matthias Heizmann, Jochen
Hoenicke, Alexander Nutz, and Andreas Podelski

Rebus

unnamed solver
not entered in
the competition

Spacer

Arie Gurfinkel, Anvesh Komuravelli, Nikolaj Bjorner,
Krystof Hoder, Yakir Vizel, Bernhard Gleiss, and

Matteo Marescotti
Hors Concours

Competition Setup

* StarExec cluster environment

* Dedicated Queue of 20 nodes

e 2 jobs per node

* 64GB per job

* 600s timeout

* Benchmarks will be publicly available on StarExec

* Detailed results will be available by request

The Friendliest Competition CHC

COMP

Fair selection of benchmarks

If a participant submitted a benchmark suit, organizers include a good
(but randomly chosen) representation of it

Help with frontend issues

Pre-processing of submitted benchmarks by CHC-COMP’s tools to
match the format more closely

Introducing new tracks
As long as there is a solver that focuses on them

Giving participants a second chance to submit solvers

After running trial runs on selections of benchmarks to avoid
discrepancies

PCSat: Predicate Constraint
Satisfaction

« Developed since January 2019
by Yuki Satake, Tomoya Kashifuku, and
Hiroshi Unno (University of Tsukuba, Japan)
in the OCaml functional language

« Support new classes of predicate constraint
satisfaction problems beyond CHC

« pCSPWF: (possibly non-Horn) constrained clauses
with well-foundedness constraints

« uCSP: (possibly alternating) least and greatest
fixpoint constraints [Nanjo+ LICS’18, Unno HCVS'18]

« Support LIA

April 7, 2019 HCVS'19, Prague, Czech

PCSat Architecture

(red parts for CHC-COMP’'19)

CHC
(CLP/SMT-LIB2)

pCSPWF
(CLP)

uCSP — Encoder

April 7, 2019

/3
f Validator
“Candidate solution
Example instapces of the origlinal constraints
Template Decision Set Covering || Pred. Abst. &
based Tree based || & QM based SAT based

Synthesizer

Synthesizer

Synthesizer

Synthesizer

> SAT

> UNSAT

HCVS'19, Prague, Czech

Hoice [Champion et al., 2018]

ICE-based Refinement Type Discovery for Higher-Order
Functional Programs

Adrien Champion!, Tomoya Chiba!,
Naoki Kobayashi', Ryosuke Sato?

' The University of Tokyo
2 Kyushu University

https://github.com/hopv/hoice

e machine-learning-based Horn clause solver:
generalized ICE framework [Garg et al., 2014]

e context: higher-order program verification

e supports Int, Real, Array, datatypes

Hoice [Champion et al., 2018]

learner produces candidates for the predicates
teacher checks each clause is respected

= each check is a quantifier-free (hon-Horn) formula

using Z3 [de Moura and Bjorner, 2008] (separate process)

Horn Clauses

The ELDARICA Horn Solver

Hossein Hojjat! Philipp Riimmer 2

1Rochester Institute of Technology
2Uppsala University

ELDARICA Overview

@ Horn solver developed since 2011

@ Open-source, implemented in Scala, running in JVM

@ Input formats:
SMT-LIB, Prolog, C, timed automata

@ Theories:
LIA, NIA, arrays, algebraic data-types, bit-vectors

@ Scala/Java API

@ Support for linear + non-linear clauses

@ https://github.com/uuverifiers/eldarica

1/2

Hojjat,Riimmer The ELDARICA Horn Solver

ELDARICA Architecture

Horn clauses A;fj:&?z)r Q
Prolog, SMT-LIB () ELDARICA
{ _~| SAT + Sol
CEGAR
—| Preprocessor > .
Engine
| 7— | UNSAT + Cex
Programs Horn Global Craig
NTS , C, - Loop P Interpolator
. Encoder
Timed Automata Analyser | | (PRINCESS)

Hojjat,Riimmer The ELDARICA Horn Solver 2/2

U ULTIMATE TREEAUTOMIZER

UNI
1

FREIBURG

Approach

» Similar to trace abstraction for programs

» Represent set of all sequences of statements that can reach an error
location as nested word automaton.
» Program is correct iff each word of this language is infeasible.

» Trace abstraction for Horn clauses

» Represent set of all derivation trees of a set of CHCs as tree automaton.
» Set of CHCs is sat iff each tree of this language is a derivation of
false.

Tools
» ULTIMATE AUTOMATA LIBRARY
» SMTINTERPOL

Contributors

Daniel Dietsch, Matthias Heizmann, Jochen Hoenicke, Mostafa M.
Mohamed, Alexander Nutz, Andreas Podelski, Daniel Tischner

U ULTIMATE UNIHORN

UNI
1

FREIBURG

Approach

1. Encode set of CHCs ® as (possibly recursive) program Pg s.t.
Pg¢ is safe iff & is sat

2. Apply off-the-shelf program verifier

Tools
» Program verifier: ULTIMATE AUTOMIZER

» Predicate providers: Newton-style interpolation (Unsat. core +
projection), SMTINTERPOL

» SMT Solvers: CVC4, MATHSAT 5, SMTINTERPOL, 73
» ULTIMATE AUTOMATA LIBRARY

Contributors
Daniel Dietsch, Matthias Heizmann, Jochen Hoenicke, Alexander Nutz,

Andreas Podelski

@ Model checker for infinite state systems described as transition
systems

@ http://sri-csl.github.io/sally/

@ Property-directed k-induction, Jovanovi¢, Dutertre, FMCAD 2016

@ Support of different reasoning engines

o Bounded model checking (BMC)
o k-induction (KIND)
o Property-directed k-induction (PDKIND)

@ Supported SMT solvers: Yices2, MathSAT5, OpenSMT?2 (unofficially)
@ Developed by Dejan Jovanovic

@ Support for CHC format (limited) and OpenSMT2 contributed by
Martin Blicha

CHC-COMP configurations

@ Support for CHC limited to transition systems in LRA

@ PDKIND engine using Yices2 as the main reasoning engine and

e MathSATS as the interpolation back-end
e OpenSMT?2 as the interpolation back-end with different interpolation

algorithms

@ MathSAT5 with default settings (Farkas interpolation)
@ OpenSMT2 with four LRA interpolation algorithms

1.
2.
3.
4.

Farkas interpolation

dual Farkas interpolation
decomposed interpolation
dual decomposed interpolation

LRA Interpolants from No Man's Land, Alt, Hyvarinen, Sharygina,
HVC 2017

Decomposing Farkas Interpolants, Blicha, Hyvarinen, Kofron,
Sharygina, TACAS 2019

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
e now the default (and only) CHC solver in Z3
— https://github.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3
Supported SMT-Theories
e Linear Real and Integer Arithmetic
e Quantifier-free theory of arrays
o Universally quantified theory of arrays + arithmetic
e Best-effort support for many other SMT-theories
— data-structures, bit-vectors, non-linear arithmetic

Support for Non-Linear CHC

o for procedure summaries in inter-procedural verification conditions

» for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO

Spacer Contributors

Arie Gurfinkel
Anvesh Komuravelli

Nikolaj Bjorner
(Krystof Hoder)
Yakir Vizel
Bernhard Gleiss
Matteo Marescotti

8XN heater

. DEShow 8:00

e ~
o
i (RexStory
QP! HEGEORY(#3011.10D
0P 'SToRies ABouT sciEcE
.. L ’ ’UblIC in pa our student activities fees
> . ~ommunication bandre u.edu
BB .

%) WATERLOO

Scoring Schema

* Three possible outputs

e Sat / Unsat/

* We count #Sat + #Unsat

* Solvers with equal total score are ordered w.r.t. running time

 Disqualification for wrong results

* No witness generation (yet)

Results: LIA-Lin CHC

COMP

Solver Score #SAT HUNSAT Avgtime
Eldarica 209 129 80 24.55
Ultimate Unihorn Automizer 133 63 70 23.05
Hoice 129 65 64 7.09
Ultimate Tree Automizer 107 42 65 29.15
PCSat 45 33 12 23.74

* 325 instances total

Results: LIA-Nonlin CHC

COMP

Solver Score HSAT #UNSAT Avgtime
Eldarica 234 131 103 15.93
Ultimate Unihorn Automizer 177 96 81 36.94
Hoice 176 110 66 9.85
PCSat 123 81 42 24.69
Ultimate Tree Automizer 73 29 44 4.85

* 283 instances total

Results: LIA+Array CHC

COMP

Solver Score #SAT #UNSAT Avgtime
Ultimate Unihorn Automizer 90 44 46 28.47
Ultimate Tree Automizer 71 39 32 44.14
Hoice 35 24 11 0.06
Eldarica 20 20 0 100.14

* 361 instances total

Results: LRA-TS

Solver

Sally-y202-decomposed-itp
Sally-y202-Farkas-itp

Sally-y202-dual-Farkas-itp
Sally-y2m5

Sally-y202-dual-decomposed-itp
Ultimate Tree Automizer

Ultimate Unihorn Automizer

Score

194
194

188
179

157
93
67

CHC

COMP

#SAT HUNSAT Avgtime

150
150

144
135

118
73
50

44
44

44
44

39
20
17

43.71
44.34

53.46
40.07

67.67
55.15
22.21

* 243 instances total

Congrats to

Eldarica

LIA-Lin and LIA-Nonlin categories

Ultimate Unihorn Automizer

LIA+Array category

Sally
LRA-TS category

Spacer

(unofficially) all LIA categories

Big thanks to

¥-StarkExec

Discussion

* Any fairness / transparency concerns?
* Frontend / format issues?

* New benchmarks / new tracks?

* Solution validation?

* CHC-COMP 2020 dates / organizers?

I
P
§
B
3

